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Abstract. Using 155Gd Mössbauer spectroscopy down to 27 mK, we show that, in the geometrically frus-
trated pyrochlore Gd2Sn2O7, the Gd3+ hyperfine levels are populated out of equilibrium. From this, we
deduce that the hyperfine field, and the correlated Gd3+ moments which produce this field, continue to
fluctuate as T → 0. With a model of a spin 1/2 system experiencing a magnetic field which reverses
randomly in time, we obtain an analytical expression for the steady state probability distribution of the
level populations. This distribution is a simple function of the ratio of the nuclear spin relaxation time to
the average electronic spin-flip time. In Gd2Sn2O7, we find the two time scales are of the same order of
magnitude. We discuss the mechanism giving rise to the nuclear spin relaxation and the influence of the
electronic spin fluctuations on the hyperfine specific heat. The corresponding low temperature measure-
ments in Gd2Ti2O7 are presented and discussed.

PACS. 76.80.+y Mössbauer effect, other γ-ray spectroscopies – 75.50.Ee Antiferromagnetics –
75.40.Gb Dynamic properties – 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian
motion

1 Introduction

In geometrically frustrated magnetic systems, the in-
teraction energies cannot be minimised at the same
time for all pairs of spins [1]. A simple example is the
two-dimensional triangular lattice with nearest-neighbour
antiferromagnetic (AF) coupling of isotropic spins (the
so-called Heisenberg antiferromagnet). An analogous sit-
uation in three dimensions is provided by the pyrochlore
structure compounds with general formula R2M2O7 where
the rare earth (R) ions and the transition metal or sp-
metal (M) ions each lie on an array of corner-sharing tetra-
hedra. A general prediction was made by Villain [2] about
the ground state of a Heisenberg antiferromagnet on a
tetrahedral lattice: as the temperature goes to zero, there
is no long range ordering and the system remains in a col-
lective paramagnetic state where spin fluctuations persist.
The low temperature properties in frustrated systems may
also be influenced by perturbations beyond the dominant
nearest neighbour exchange interaction [3]. These include
exchange with more distant neighbours [4–6], dipolar cou-
pling [7], and anisotropy [8,9]. They may lead to the lifting
of the degeneracy of the ground state and to the develop-
ment of magnetic long range order.

The gadolinium based pyrochlore compounds
Gd2Ti2O7 and Gd2Sn2O7, where the M sublattice
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is non-magnetic, possess the basic ingredients of a
Heisenberg antiferromagnet. The Gd3+ ion has zero
orbital moment (L = 0, S = 7/2) and thus presents a
(quasi) isotropic response to an exchange or external
field. Both compounds show a negative paramagnetic
Curie-Weiss temperature θp indicative of AF coupling.
Our values, θp = −9.9 K for Gd2Ti2O7 and −8.6 K for
Gd2Sn2O7, are similar to those of the literature [10,11].
Experimentally, however, it is known that the properties
of the Gd3+ based pyrochlores do show some differences
relative to those expected for the nearest neighbour AF
Heisenberg model. For example, in Gd2Ti2O7, specific
heat data suggest that a phase transition occurs near
1 K [10] and below this temperature neutron diffraction
data evidence magnetic Bragg peaks [12]. The details
of the low temperature properties of the Gd3+ based
pyrochlores are however quite complex. We show here
that, in Gd2Sn2O7, the Gd3+ spins are magnetically
correlated and continue to fluctuate as T → 0.

The evidence for the very low temperature spin fluc-
tuations is provided by 155Gd Mössbauer measurements,
but not through the conventional approach based on the
analysis of the Mössbauer line shape to obtain the relax-
ation rate. This approach is possible only when the fluctu-
ation rate of the spins falls within the classical Mössbauer
“relaxation window”, which is centered around 100 MHz
for 155Gd. In the present case, the spins fluctuate at



348 The European Physical Journal B

lower frequencies such that the hyperfine field associated
with the Gd3+ spin appears static on the Mössbauer time
scale. The very low temperature spin fluctuations were
evidenced using a novel method, i.e. through the obser-
vation that the hyperfine levels of the 155Gd nuclei are
populated out of thermal equilibrium. We show that an
out-of-equilibrium distribution can occur when the elec-
tronic spin flips persist at low temperature and when the
nuclear relaxation time T1 is longer than, or of the same
magnitude as, the flipping time τ of the hyperfine field
(of the electronic spin). Considering the nuclear spins as
a two-level system driven by a randomly fluctuating field,
we develop a stochastic model which yields an analytical
expression for the probability distribution of the level pop-
ulations. This quantity depends on the ratio T1/τ of the
two characteristic times of the system and it is directly
linked to the effective hyperfine temperature provided by
the very low temperature Mössbauer measurements.

We also propose a nuclear relaxation mechanism,
linked with the scattering of electronic spin-waves, which
could explain the short nuclear relaxation times suggested
by the analysis and we discuss some implications of the
presence of spin fluctuations on the magnitude of the hy-
perfine specific heat.

2 The low temperature 155Gd Mössbauer
measurements

The pyrochlore lattice corresponds to the cubic space
group Fd3m and the crystallographic unit cell contains
16 Gd3+ ions each with the same point symmetry 3̄m.
Each Gd3+ ion has one of the four [111] directions as
threefold symmetry axis. The Mössbauer transition of the
155Gd isotope links the nuclear ground state, with spin
Ig = 3/2 to the first excited state, with spin Ie = 5/2,
at an energy E0 = 86.5 keV. The Mössbauer spectra for
Gd2Sn2O7 and for Gd2Ti2O7 were recorded in the range
from 4.2 K down to 27 mK, in a 3He-4He dilution refriger-
ator coupled to a constant acceleration spectrometer and
using a Sm(155Eu)Pd3 source. For 155Gd, the velocity unit
1 mm s−1 corresponds to 69.8 MHz or to 3.35 mK.

At 4.2 K, in agreement with the literature [13,14],
for each of the two compounds we observe a quadrupole
hyperfine spectrum characteristic of the paramagnetic
phase. The quadrupole splitting is −4 and −5.5 mm s−1

in Gd2Sn2O7 and in Gd2Ti2O7 respectively, correspond-
ing respectively to a splitting of 13.5 and 18.4 mK between
the m = ±3/2 and m = ±1/2 sublevels of the Ig = 3/2
155Gd nuclear ground state. As Gd3+ is an S-state ion, in
these insulating compounds, the hyperfine quadrupole in-
teraction is due only to the electric field gradient produced
by the anisotropic distribution of lattice charges.

Below∼ 1 K, an additional magnetic hyperfine interac-
tion is visible. Usually, the presence of a hyperfine field is
linked with magnetic ordering, but short range correlated
moments also yield a hyperfine field spectrum provided
their fluctuation frequency is lower than a characteristic
value of about 100 MHz for 155Gd. The thermal evolution

Fig. 1. 155Gd Mössbauer absorption spectrum at 27 mK in
Gd2Sn2O7. The sample temperature is at most 33(2) mK (see
text). The dashed line represents the expected theoretical spec-
trum at T = 27 mK, the thin solid line the expected spectrum
for equipopulated hyperfine levels (T > 0.2 K) and the thick
solid line passing through the experimental points the spec-
trum with a fitted effective temperature Teff = 90 mK.

Fig. 2. 155Gd Mössbauer absorption spectrum at 27 mK in
Gd2Ti2O7. The sample temperature is at most 33(2) mK (see
text). The fitted line was obtained with an effective tempera-
ture of 36 mK.

of the magnetic hyperfine parameters and the informa-
tion they provide concerning low temperature magnetic
properties will be discussed in a future publication. We
mention here that, in each compound at any temperature
below ∼1 K, the four moments of a tetrahedron have a
common size and a common local direction (perpendicu-
lar to the appropriate [111] axis). Our results are coherent
with a number of the features of the magnetic structure
proposed for Gd2Ti2O7 in reference [12], but differ in one
aspect. Whereas reference [12] suggests that one of the
sites of a tetrahedron experiences zero mean field, we find
that a sizeable exchange field is present at each of the four
sites.

In the following, we will focus on the data obtained
at 27 mK, shown in Figure 1 for Gd2Sn2O7 and in Fig-
ure 2 for Gd2Ti2O7. For Gd2Sn2O7, the fitted hyperfine
field is 30 T, and the combined quadrupolar and mag-
netic interactions within the ground Ig = 3/2 nuclear state
yield four hyperfine sublevels with energies 0, 0.05, 12.1
and 15.9 mK. Therefore, at a temperature not too high
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with respect to these splittings, the intensities of the Möss-
bauer absorption transitions originating from these levels
should reflect their different populations. In other words,
the effective hyperfine temperature can be obtained from
the line intensities of the 155Gd Mössbauer spectrum in-
sofar that the temperature is below about 200 mK. The
27 mK spectrum in Gd2Sn2O7 of Figure 1 was fitted with
the temperature as a free parameter. Surprisingly, the best
fit, shown as a thick solid line in Figure 1, yields an effec-
tive hyperfine temperature of 90 mK. Taking into account
experimental uncertainties, this temperature falls in the
range from 60 to 120 mK. Also represented in Figure 1
are the expected spectrum for T = 27 mK (dashed line)
and the limiting high temperature (T > 200 mK) spec-
trum when the hyperfine levels are equi-populated (thin
solid line). Thus, it is clear the difference between the
measured effective hyperfine temperature and the sample
temperature is outside statistical errors. In this analysis,
lineshape effects that could lead to intensity deviations
were fully accounted for: the dispersive correction [15] was
included with ξ = 0.027, as was the Goldanskii-Karyagin
effect shown to be present in the Gd pyrochlores [16] with
an anisotropy coefficient ε = −1.5.

We checked that the Mössbauer absorber, which is in
the form of a powder mixed with General Electric var-
nish and glued onto a thin copper sheet, was correctly
thermalised by carrying out two controls. First we per-
formed a 27 mK measurement with the isotope 151Eu
(Ig = 5/2, Ie = 7/2, E0 = 21.6 keV) in the insulating com-
pound EuAl2Si2O8 (Eu2+ charge state) in its saturated
magnetically ordered state. As the hyperfine interaction
is larger for 151Eu2+ than for 155Gd3+, Eu2+ compounds
are better “Mössbauer thermometers” [17] than are Gd3+

compounds. From these measurements, we found that the
151Eu hyperfine level temperature corresponds exactly to
the sample temperature. Second, we performed, under
identical experimental conditions as for the pyrochlores,
a 27 mK 155Gd Mössbauer measurement in the metallic
Gd-based ferromagnet GdCo2B2 (TC = 26 K). This com-
pound was selected because the size of the quadrupole
hyperfine interaction and the size and direction of the
saturated hyperfine field relative to the principal axis of
the electric field gradient [18] are close to those in the
pyrochlores. We obtained a hyperfine level temperature
of 33(2) mK, slightly higher than that of the sample. This
difference could be due to the heating of the sample by the
incident high energy γ-rays, so that a small temperature
gradient exists between the sample and the carbon tem-
perature probe. Such a heating would also occur for the
155Gd measurements in the pyrochlores meaning that for
a temperature probe value of 27 mK, the actual sample
temperature could be 33(2) mK. We thus reach the con-
clusion that in Gd2Sn2O7, the sample temperature is at
most 35 mK, but that the hyperfine levels have an effec-
tive temperature of 90(30) mK; they are thus populated
out of thermal equilibrium.

From the 155Gd Mössbauer analysis of the 27 mK
data in Gd2Ti2O7 (Fig. 2), we find that the hyperfine
field is 28.3 T, and the combined quadrupolar and mag-

netic interactions yield four hyperfine sublevels situated
at 0, 0.02, 17.0 and 20.4 mK. In contrast to Gd2Sn2O7,
the measured effective hyperfine temperature is found to
be 36 mK. As this is only very marginally higher than
the sample temperature (33(2) mK), there is no clear ex-
perimental evidence that the hyperfine level temperature
is different from that of the sample. The hyperfine levels
can be said to be practically in thermal equilibrium. As
the measurements in Gd2Sn2O7 and in Gd2Ti2O7 were
carried out under exactly the same experimental condi-
tions, the fact that there is at most only a small difference
in the two temperatures for Gd2Ti2O7, whereas there is a
marked difference for Gd2Sn2O7 reinforces the credibility
of the anomalous hyperfine level temperature found for
Gd2Sn2O7.

Our interpretation of the non-Boltzmann population
distribution in Gd2Sn2O7 is based on the influence of spin
dynamics. The hyperfine levels do not reach thermal equi-
librium because the Gd3+ hyperfine field continues to fluc-
tuate as T → 0. In turn, this means the Gd3+ magnetic
moments which are at the origin of the hyperfine fields
continue to fluctuate as T → 0. As shown in Section 4,
this approach also entails that the hyperfine spin-lattice
times are of the same magnitude as those associated with
the fluctuations of the Gd3+ hyperfine field.

As described above, the quadrupole and magnetic hy-
perfine interactions in Gd2Sn2O7 lift the degeneracy of
the Ig = 3/2 ground state to leave two almost degenerate
levels at 0 and 0.05 mK and two closely separated lev-
els at 12.1 and 15.9 mK. To a first approximation, this
resembles a two level system with an energy separation
∼ 14 mK. In the next section we present a model of a
spin 1/2 system driven by a randomly varying (hyper-
fine) field. Although the 155Gd mixed nuclear levels in
Gd2Sn2O7 cannot be mapped exactly onto a spin 1/2 sys-
tem, the main results of our calculation are not affected
by the details of the nuclear wave-functions.

3 The model of a two-level system driven
by a randomly varying field

In order to put on a more quantitative ground the concept
of effective temperature due to the competition between
nuclear relaxation with time scale T1 and electronic spin
flip, with time scale τ , we performed a model calculation
on a two-level (nuclear) spin 1/2 system driven by a ran-
domly time dependent (hyperfine) field.

We wish to calculate the steady state out-of-
equilibrium distributions of the populations of the two lev-
els. We show here that the problem of a two level system
in a randomly flipping field is exactly soluble, and that
the steady state probability distribution can be expressed
in terms of the ratio µ = T1/τ . A two level system need
not necessarily be a spin 1/2 system. The low tempera-
ture properties of glasses, for example, are argued to be
dominated by quasi degenerate local configurations, where
an atom or molecule hops between two local equilibrium
positions [19,20]. The difference of energies between these
two positions plays the role of the Zeeman splitting for
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a spin 1/2. If these two level systems are strongly inter-
acting, then the splitting field itself will have non trivial
dynamics, and our calculation might be relevant to this
situation as well.

Our calculation provides an exact solution for the
steady state distribution of a non equilibrium, randomly
driven system. For a two level system, it is justified to
describe the relaxation dynamics in terms of a single re-
laxation time T1. This comes from the fact that the Mas-
ter evolution operator for the ‘up’ probability Pu(t) and
‘down’ probability Pd(t) has two eigenvalues – one is zero
and corresponds to the Boltzmann equilibrium, and the
second is 1/T1. Here we will consider a splitting field
H(t) = ±H0, which changes its direction (or sign) ran-
domly in time. We assume that the probability of switch-
ing per unit time is a constant 1/τ . Then the time inter-
val tf between two successive flips is distributed according
to an exponential law of mean τ :

ρ(tf ) =
1
τ

e−tf/τ . (1)

We are interested in the distributions of the populations
of the two levels, but it turns out that the calculation is
easier if we use the magnetization M(t):

M(t) = m0 [Pu(t)− Pd(t)] , (2)

where ±m0 is the intrinsic moment of the spin levels. This
is due to the symmetry properties of the corresponding
distributions (see Eq. (7) below). Within the time inter-
val during which H(t) is constant, we obtain an explicit
expression for M(t), that we denote by M+(t) or M−(t),
depending on the sign of H(t). Suppose H(t) is positive
between t1 and t2, and then negative between t2 and t3.
Then we can write, for t1 ≤ t ≤ t2:

M+(t) = M0

(
1− e−(t−t1)/T1

)
+M−(t1) e−(t−t1)/T1

(3)

and for t2 ≤ t ≤ t3:

M−(t) = −M0

(
1− e−(t−t2)/T1

)
+M+(t2) e−(t−t2)/T1 .

(4)

where M0 = m0 tanh m0H0
kBT

is the Boltzmann magnetiza-
tion of the system under a static magnetic field H0. Since
the times ti are randomly distributed, we must deter-
mine the sequence of random magnetizations correspond-
ing to the flipping times,M−(t2i+1) andM+(t2i+2). In the
steady state, these quantities are identically distributed
random variables M− and M+, with some probability dis-
tributions P−(M−) and P+(M+). Between two successive
flips, M+ and M− are related by:

M+ = M0

(
1− e−tf/T1

)
+M−e−tf/T1 , (5)

and vice versa. Obviously, both M+ and M− will be in
the interval [−M0,M0]. The stationarity of the probability

distributions allows us to write the following equation:

P+ (M+) =
∫ M0

−M0

dM−P−(M−)
∫ +∞

0

dtf ρ(tf )

×δ
[
M+ −

(
M0

(
1− e−tf/T1

)
+M−e−tf/T1

)]
.(6)

For reasons of symmetry, P+ and P− satisfy the following
relation:

P−(M) = P+(−M), (7)

so that we get an integral equation involving only one dis-
tribution. It will be useful to make the following changes
of variables:

u = e−tf/T1 , y =
M+

M0
, z =

M−

M0
· (8)

One therefore also has: P+(y) = M0 P+(M+). The result-
ing integral equation is:

P+(y) =
∫ 1

−1

dz P+(−z )
∫ 1

0

T1 du
u

×u
T1/τ

τ
δ [y − ((1− u) + zu)] · (9)

Introducing the ratio µ = T1/τ of the relaxation time to
the flipping time and using the properties of the δ distri-
bution we find:

P+(y) =
∫ 1

−1

dz
P+(−z)

1− z

∫ 1

0

µdu uµ−1 δ

(
u− 1− y

1− z

)
·

(10)

For the integral over u to be non-zero, we must have
1−y
1−z < 1, or equivalently z < y. Changing z in −z, we
obtain the resulting integral equation:

P+(y) = µ(1− y)µ−1

∫ 1

−y

P+(z)
(1 + z)µ

dz · (11)

It is easily checked that the following beta-distribution is
an exact solution of this integral equation:

P+(y) =
Γ
(

1
2 + µ

)
Γ
(

1
2

)
Γ (µ)

(1− y)µ−1(1 + y)µ, (12)

where Γ (x) is the usual Gamma function defined as:
Γ (x) =

∫ +∞
0 tx−1e−tdt. Now we are interested in the dis-

tribution of magnetization M(t) at any time t, not nec-
essarily a flipping time. However, since the flip times are
chosen at random, the distribution we have just computed
is also that governing the magnetization observed at an
arbitrary instant of time.

This distribution P+(y) must be used to compute the
average populations of the energy levels, as will be done
in the next section. Here, we just derive the mean dis-
tribution P (y) of the (rescaled) magnetization, obtained
by averaging over the periods of positive and negative H.
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Fig. 3. Temporal evolution of the population p`(t) of the
ground level of a nuclear spin 1/2 doublet as the hyperfine
field reverses randomly in time, for three values of the ratio
T1/τ . The doublet splitting is ∆/kB = 14 mK and the sample
temperature T = 33 mK. The reversals were arbitrarily chosen
to occur at 5, 9, 17 and 20 a.u and the nuclear relaxation has
an exponential form. Dashed line: T1 � τ ; the hyperfine levels
have time to thermalize between spin flips, and the time av-
erage of p` is the Boltzmann value pB

` (0.63); thick solid line:
T1 ∼ τ ; the time average of p` is smaller than pB

` and it is
a function of the ration T1/τ ; thin solid line (with straight
segments): T1 � τ ; the time average of p` tends to 0.50.

Since the two values of H are equally probable, we can
write P (y) as:

P (y) =
1
2

[P+(y) + P+(−y)] (13)

=
Γ
(

1
2 + µ

)
Γ
(

1
2

)
Γ (µ)

(1− y2)µ−1, (14)

which is, of course, an even expression in y, leading to a
zero mean value for the magnetization. For µ → 0, this
distribution tends to two δ functions at ±1, as it should.
Interestingly, when µ < 1, the points y = ±1 are still the
most probable values of the magnetization. This comes
from the fact that for long flip times, the magnetization
has time to converge towards its asymptotic value. How-
ever, when the flips become too frequent (i.e. for µ > 1),
the most probable value of the magnetization is zero. For
large µ, the distribution actually becomes Gaussian, with
a width equal to 1/

√
µ.

4 Effective hyperfine temperature
in Gd2Sn2O7

In order to compare with experiment (Sect. 2), it is conve-
nient to express the probability distribution found above
in terms of an effective temperature. First, we present in
Figure 3 a schematic representation of the time depen-
dence of the population of the lowest energy level for the
two limiting cases of rapid and slow nuclear relaxation

with respect to the spin flip, and for the intermediate
case where the two time scales T1 and τ are of compara-
ble magnitude. When T1 is comparable to or larger than
τ , the time-averaged population is reduced compared to
the Boltzmann value. In this context it is important to
emphasize the difference between spin states and energy
levels. When the hyperfine field flips, the spin states ex-
change their energies, so that the two spin directions are
equiprobable on average. This is not the case for the en-
ergy levels, as the level with the lowest energy remains the
most probable on average.

We now calculate the steady state population of the
lowest level. We can identify a spin state and an energy
level only for a given value of the field H(t). For instance,
if H(t) = +H0, the lowest energy level corresponds to the
“up” state. The probability p+

` to be in the lowest state
when H(t) = +H0 is therefore given by:

p+
` =

1
2

(1 +M+) =
1
2

(
1 + y

M0

m0

)
· (15)

In a similar way, the probability to be in the lowest state
when the field is −H0 is given by:

p−` =
1
2

(1−M−) =
1
2

(
1− yM0

m0

)
· (16)

Therefore, the average population in the lowest level is
obtained as:

〈p`〉 =
1
2

+
1
4
M0

m0

∫ 1

−1

[yP+(y)− yP−(y)] dy. (17)

Using the fact that P+(y) = P−(−y), this expression can
be transformed into:

〈p`〉 =
1
2

[
1 +

M0

m0

∫ 1

−1

yP+(y) dy
]
· (18)

Using the expression of P+(y) given by equation (12), we
find:

〈y〉P+ =
Γ
(

1
2 + µ

)
Γ
(

1
2

)
Γ (µ)

Γ
(

3
2

)
Γ (µ)

Γ
(

3
2 + µ

) (19)

=
1

1 + 2µ
, (20)

so that finally

〈p`〉(µ, T ) =
1
2

(
1 +

1
1 + 2µ

tanh
m0H0

kBT

)
· (21)

It is natural to define an effective temperature Teff such
that:

〈p`〉(µ, T ) =
1

1 + exp(−∆/kBTeff)
, (22)

where ∆ = 2m0H0 is the mean hyperfine splitting. There-
fore, the following relation holds between Teff , T and µ:

tanh
∆

2kBTeff
=

1
1 + 2µ

tanh
∆

2kBT
· (23)
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Fig. 4. Effective hyperfine temperature Teff for a nuclear spin
1/2 system, with a splitting ∆/kB = 14 mK and for a tem-
perature T = 33 mK, as a function of the ratio of the nu-
clear relaxation time T1 to the electronic spin flip time τ . The
dashed lines link the effective hyperfine temperature measured
in Gd2Sn2O7 to the T1/τ value.

In the limit kBT > 2∆, which is the temperature range
of the experiments, the above relation reduces to a simple
linear function:

Teff ' 2Tµ + T. (24)

In the other limit, when T goes to zero, we get from equa-
tion (23):

tanh
∆

2kBTeff
→ 1

1 + 2µ
· (25)

So, if µ does not tend to zero with T , Teff remains fi-
nite, or even goes to infinity if µ diverges as T → 0. As
will be discussed in Section 5, this latter case is plausi-
ble because T1 should increase and τ can remain finite as
T tends to zero. The out-of-equilibrium two-level system
should then show equipopulation at zero temperature. We
note that the concept of an effective temperature in out-
of-equilibrium systems has been recently discussed in [21],
where the general situation of a continuous degree of free-
dom interacting with a multi-time scale random environ-
ment is considered.

The effective temperature as a function of µ = T1/τ is
represented in Figure 4 for Gd2Sn2O7, assuming a sample
temperature of 33 mK and a nuclear sublevel splitting of
14 mK. The time scale ratio can be read off on the fig-
ure from the value of the measured hyperfine temperature
Teff ; choosing the experimental mean value Teff = 90 mK,
we find: T1/τ ∼ 0.85. Because the experimental accuracy
with which Teff can be measured decreases progressively
as the temperature is increased, it is not possible to ob-
tain reliable values for Teff as a function of T , nor to obtain
any information concerning the thermal dependence of the
ratio µ.

Therefore, in the ground state of Gd2Sn2O7 at very low
temperatures, the Gd3+ magnetic moments are correlated
and they fluctuate with a characteristic time which is close
to the nuclear relaxation time. The fact that T1 and τ are

of the same magnitude is somewhat surprising, as in para-
magnetic insulators the nuclear relaxation times at very
low temperature are in the majority of cases quite long
(∼ 10−2 − 1 s), whereas the electronic fluctuation times
are rather in the µs range or shorter. However, in magnet-
ically ordered (or short range correlated) materials at low
temperature, the dominant hyperfine relaxation mecha-
nism is the scattering of magnons by nuclear moments
via the transverse part of the hyperfine interaction [22].
This mechanism yields nuclear relaxation frequencies pro-
portional to the square of the hyperfine constant A, and
can lead to short relaxation times, as measured for in-
stance in antiferromagnetic CrCl3 [23] where T1 of 53Cr
is in the range 10−4 − 10−3 s in zero or low field at low
temperature. As the hyperfine constant of 155Gd is about
10 times bigger than that of 53Cr, it is likely that the
hyperfine relaxation frequencies fall in the MHz range in
Gd2Sn2O7. Further information concerning the fluctua-
tion rate of the Gd3+ spins should be provided by our
planned muon spin relaxation (µSR) measurements. An-
other possibility would be to perform 119Sn Mössbauer
absorption measurements in Gd2Sn2O7. The Sn atom is
non magnetic, but the Sn nucleus will experience a trans-
ferred hyperfine field arising from the Gd3+ moments, and
this field will follow their fluctuations. Such an approach
was successfully used in the spin-fluctuation compound
UPd2Sn [24], where we could measure the hyperfine field
relaxation frequency in the 100 MHz range, corresponding
to that of the U3+ moment, down to 50 mK.

Let us remark that for paramagnetic spins experienc-
ing an exchange interaction, the spin fluctuations would
occur at a rate 1

τ ∼
kB|θp|
h ; taking θp ∼ −8 K, (the ex-

perimental value for Gd2Sn2O7) then 1
τ ∼100 GHz. Such

fluctuation rates are well above the upper limit of the
155Gd Mössbauer “relaxation window” (∼ 1 GHz) and
they would completely wipe out the hyperfine structure.
As the low temperature fluctuations of the Gd3+ moments
occur at frequencies below 100 MHz, they cannot be linked
to paramagnetic relaxation. This confirms that the fluc-
tuations concern Gd3+ moments that are correlated.

5 Influence of the electronic fluctuations
on the hyperfine specific heat

We will compute here the steady state out-of-equilibrium
hyperfine specific heat when electronic spin fluctuations
are present. As a function of the ratio µ of the nuclear re-
laxation time to the electronic flip time, the average steady
state populations 〈p`〉(µ, T ) and 1− 〈p`〉(µ, T ) of the two
levels fulfil the relation:

2〈p`〉(µ, T )− 1 = g(µ)
(
2pB` − 1

)
, (26)

where pB` is the Boltzmann population and g(µ) a reduc-
tion function given by equation (20):

g(µ) =
1

1 + 2µ
· (27)
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The energy of the out-of-equilibrium two-level system be-
ing given by:

E(µ, T ) = 〈p`〉(µ, T )E1 + [1− 〈p`〉(µ, T )]E2

= E2 − ∆〈p`〉(µ, T ), (28)

the specific heat is readily obtained as:

Cp = g(µ)Cnucp −∆
(
pB` −

1
2

)
dµ
dT

dg
dµ
, (29)

where Cnucp is the standard (static) two-level Schottky ex-
pression:

Cnucp = kB

(
∆

kBT

)2 exp(−∆/kBT )
[1 + exp(−∆/kBT )]2

· (30)

The first term in equation (29) leads, for finite µ, to a
reduction of the nuclear specific heat with respect to the
standard (static) Schottky result, since g(µ) < 1. The sign
of the second term depends on the sign of dµ

dT which is
difficult to estimate because, in principle, both T1 and τ
should decrease as temperature increases. A reasonable
assumption is that T1, which is due to a thermally driven
mechanism, varies with temperature more rapidly than τ ,
which is probably associated to a (tunneling) quantum
mechanism. Then dµ

dT < 0, and the second term in the
expression of Cp leads to a further, but temperature de-
pendent, reduction. Therefore, the specific heat associated
with the hyperfine levels could be strongly reduced in the
presence of electronic fluctuations. In particular, when the
low temperature electronic fluctuations are very fast, i.e.
when the ratio µ� 1, the hyperfine specific heat vanishes,
as both g and dg

dµ tend to zero when µ increases. To illus-
trate this point, Figure 5 presents the hyperfine specific
heat (Eq. 29) divided by temperature, for the case dµ

dT = 0,
in the temperature range above the Schottky anomaly
peak, and for increasing values of the ratio µ. Whatever
the value of µ, the Schottky peak occurs at the same tem-
perature (∼ ∆/3), but its height decreases as µ increases.
Figure 5 shows that, as µ increases (i.e. as the electronic
relaxation rate increases if T1 is kept constant), the high
temperature part of the hyperfine Schottky anomaly ap-
pears at lower temperature.

An issue of current interest in geometrically frustrated
compounds concerns the possible existence of a missing
electronic entropy [25]. Since the electronic entropy is de-
duced from the total measured specific heat by subtract-
ing the hyperfine contribution, it is necessary to incorpo-
rate a correct assessment of the latter, as discussed in
reference [26]. As shown here, the steady state out-of-
equilibrium hyperfine specific heat appropriate for fluctu-
ating spin systems may be smaller than the hyperfine spe-
cific heat due to the standard (static) Schottky anomaly.
In such a case, the value of the electronic entropy obtained
by subtracting the standard (static) Schottky anomaly
contribution from the total measured value would be un-
derestimated.

In theory, all geometrically frustrated systems are po-
tential candidates for a reduced hyperfine specific heat

Fig. 5. Thermal variation of the hyperfine specific heat divided
by the reduced temperature t = kBT

∆ in the presence of elec-
tronic fluctuations, for increasing values of the ratio µ = T1/τ
(see text), in the temperature range above the Schottky peak.
Note the logarithmic scale on both axes.

because such systems share the common property of per-
sisting low temperature spin fluctuations. In practice, the
amount of reduction (from no reduction to total removal)
will depend on the ratio µ of the nuclear relaxation and
electronic spin flip times. For the rare-earth pyrochlores
quite different behaviours are observed. As shown here, in
Gd2Sn2O7 where µ ∼ 0.85, the hyperfine specific heat will
be reduced at least by a factor 0.37. In Yb2Ti2O7, where
the low temperature spin flip time is ∼ 1 µs [27], the hy-
perfine specific heat appears to be present with a value
approaching its full possible size [28]. An essentially com-
plete hyperfine specific heat appears also to be present in
Ho2Ti2O7 [26]. In Dy2Ti2O7 however, the hyperfine spe-
cific heat appears to be considerably reduced: the Schot-
tky anomaly calculated using the known hyperfine Dy3+

hyperfine parameters [29] is not present in the data of
reference [25]. This absence of a hyperfine specific heat
provides evidence that the electronic spin flips persist as
T → 0 in Dy2Ti2O7. Considering the different pyrochlores
relative to Figure 4, Yb2Ti2O7, Ho2Ti2O7 and Gd2Ti2O7

are situated near the left hand side, Gd2Sn2O7 is situated
near the centre and Dy2Ti2O7 is situated near or beyond
the right hand side.

6 Conclusion

Collective electronic spin fluctuations have been evidenced
by 155Gd Mössbauer spectroscopy in the frustrated anti-
ferromagnet pyrochlore Gd2Sn2O7 at very low tempera-
ture (27 mK). These fluctuations show up in an unusual
manner, i.e. through the out of thermal equilibrium pop-
ulations of the 155Gd hyperfine levels. We developed a
model calculation which provides the stationary popula-
tions of a spin 1/2 system in the presence of a magnetic
field which randomly reverses in time. With simple as-
sumptions, we obtain an analytical expression for the level
populations, or equivalently for the effective temperature
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of the system, as a function of the ratio of the nuclear
relaxation time to the electronic flip time. Applying this
calculation to the case of Gd2Sn2O7, we find that the ratio
of these two time scales is close to unity.

From an analogous study of Gd2Ti2O7 we show that
the hyperfine levels are populated at or close to ther-
mal equilibrium. This difference compared to Gd2Sn2O7

is probably not due to any difference in their basic prop-
erties: in both compounds, we find that the antiferromag-
netic Gd3+ – Gd3+ coupling has comparable strength, and
that below ∼1 K, the electronic moments are blocked (on
the scale of ∼100 MHz) along directions perpendicular to
the appropriate local [111] axis. Rather, we propose that
the hyperfine populations in Gd2Ti2O7 are at, or near,
thermal equilibrium because the electronic spin fluctua-
tions are partially quenched under the influence of disor-
der. The presence of disorder in Gd2Ti2O7 is suggested by
the abnormally enhanced background signal in the X-ray
diffraction patterns both for our and for other [30] sam-
ples. In Gd2Sn2O7 there is no abnormal background sig-
nal.

Finally, we examine the consequence of electronic spin
fluctuations on the hyperfine specific heat and show that
it can be strongly reduced when the ratio of the nuclear
relaxation time to the electronic flip time is comparable
to or greater than unity.

We thank J.F. Lericque and N. Genand-Riondet for technical
assistance and A. Forget for preparing the samples.
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